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ABSTRACT 

The convexity theory for oriented matroids, first developed by Las Vergnas 
[17], provides the framework for a new computational approach to the Steinitz 
problem [13]. We describe an algorithm which, for a given combinatorial 
(d - 2)-sphere S with n vertices, determines the set C,t. (S) of rank d oriented 
matroids with n points and face lattice S. Since S is polytopal if and only if there 
is a realizable M E C,~, (S), this method together with the coordinatizability test 
for oriented matroids in [10] yields a decision procedure for the polytopality of a 
large class of spheres. As main new result we prove that there exist 431 
combinatorial types of neighborly 5-polytopes with 10 vertices by establishing 
coordinates for 98 "doubted polytopes" in the classification of AItshuler [1]. We 
show that for all n _-> k + 5 _>-- 8 there exist simplicial k-spheres with n vertices 
which are non-polytopai due to the simple fact that they fail to be rnatroid 
spheres. On the other hand, we show that the 3-sphere M9963 with 9 vertices in [2] 
is the smallest non-polytopal matroid sphere, and non-polytopal matroid 
k-spheres with n vertices exist for all n ~ k + 6 _-> 9. 

1. Introduction 

The classification of all combinatorial types of convex polytopes of given 
dimension and number of vertices has a long tradition in combinatorial convex 
geometry. While this problem is completely solved for 3-polytopes by Steinitz' 
theorem [15] and for d-polytopes with less than d + 4 vertices by results of Mani 
and Kleinschmidt, see [13], still only very little is known for d-polytopes with n 
vertices where n > d + 4 > 8. 

All attempts to solve the Steinitz problem, i.e., to find intrinsic characteriza- 
tions for boundary complexes of higher-dimensional polytopes, have not been 
successful. Considering the results of this paper it seems very likely that such a 
local Steinitz theorem does not exist. 
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In 1967 Griinbaum [15] gave an affirmative answer to the question whether 

there exists at least an algorithm that enumerates all combinatorial types of 

spheres with n vertices. Enumerating all combinatorial spheres one is left with 

the problem to decide whether a given sphere is isomorphic to the boundary 

complex of a polytope in R a. This problem can be formulated in terms of 

elementary algebra. Therefore it is decidable by a theorem of Tarski [23]. 

Tarski's algorithm, however, is hopelessly inefficient and so far no efficient 

decision procedure for the polytopality of combinatorial spheres is known. 

This paper deals with the transformation of this problem to the realizability 

problem of oriented matroids. 

Throughout the paper an oriented matroid will be represented by its 

chirotope, i.e., the set of signed bases, compare [9]. 

In [101 we describe an efficient method to solve inequality systems arising from 

chirotopes. This algorithm finds coordinates for a large class of chirotopes and so 
far no realizable configuration not belonging to this class is known. 

Thus this paper should be seen in connection with [9] and [10], although those 

papers are written in terms of the more general theory of oriented matroids. The 

development of our method was mainly motivated by the Steinitz problem and 

has its origin in proofs of polytopality and non-polytopality due to the first 

author in [61, [8], [7]. 
After giving the basic concepts of convexity in oriented matroids in terms of 

their chirotopes in Section 2, we describe in Section 3 how to find the set of 
d-chirotopes with a face-lattice isomorphic to a given sphere. In Section 4 we 

prove the existence of a wide class of non-matroid spheres and in Section 5 we 
complete the classification of all neighborly 4-polytopes with 10 vertices. Finally, 

in Section 6 we treat the case of non-polytopal simplicial matroid spheres. 

2. Oriented matroid spheres 

In this section we recall the basic concepts of convexity in oriented matroids in 

terms of their chirotopes. For details see [5], [17] and the other papers quoted in 

[91. 
Let A(n,d):={(At . . . . .  Xd) ENd I 1 < At < " "  < Ad =< n} be the set of ordered 

d-tuples of n elements. 

A E A(n. d) will be considered sometimes as set A = {At . . . . .  A~} as well. A 

mapping X: A(n, d)---~ { - 1,0, + 1} is called a d-chirotope with n vertices if for all 

t L E A ( n , d + 2 )  there exist vectors x,, . . . . . .  x,~+2~R d such that for all A E 

A(n, d) with A C/z 
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X(h) = sign(det(x ~ . . . . . .  x ~d)). 

X will be extended to {1, . . . ,  n} a in the canonical alternating way. 

It is easy to see that this definition is equivalent to those given in [9] using 

hyperline images or Grassmann-Pliicker relations. 

A d-chirotope X with n vertices is called realizable if there exist x~ . . . . .  x, E 

R d such that for all h E A(n, d) 

X(A ) = sign(det(x~,, . . . ,  x~d)). 

In this case X is also called the chirotope of linear dependencies on {x~,.. . ,  x~ }. 

Thus the definition of a d-chirotope says each choice of a restriction of X 

corresponding to /~ E A(n, d + 2) is realizable. 

The (k+l)-chirotope of affine dependencies on {yt . . . . .  y , } E R  k is the 

chirotope of linear dependencies on {1} × {y~ . . . . .  y,} E R k+l. 

X is called simplicial if Im X C { - 1, + 1}. 

The cocircuits of X are the signed vectors 

= - (  . . . .  . . . . .  . . . .  ° fo r   eh(n,d-1). 

Given a d-chirotope X with n vertices the dual of X is defined by 

X*: A(n, n - d)---~ { -  1,0, + 1} 

X ~ X({1 . . . . .  n } \ X ) - ( -  1) ~7:~x' 

The circuits of X are cocircuits of X*- 

We define the deletion g \ n :=  g tA~.-i.d~ and the contraction x/n:= (g* \ n)* for 
the vertex n. The general case we get by renumbering. 

F C {1 . . . . .  n} is called a facet of X if there exists a cocircuit C, (X) ~ { + 1,0}", 

/~ E A ( n ,  d - 1), with 

~¢(/~, . . . . .  /z~_,,i) = ~ 0 
for i ~ F  

[ 1  for i E{1 . . . .  , n}\F 

or in short notation 

Ctv---0 and C1{I ...... ~ v = l .  

k 
F C {1 . . . . .  n} is called a face of X if F = n~=~ F~ for facets F ,  1 <= i -= k, of X- 

The face lattice FL(x)  is the lattice of all faces ordered by inclusions. X is 

called affine if ~b E FL(x)  ¢~ FL(x*) = O. 

Given a convex k-polytope P = conv{y, . . . . .  y,} C R k the face lattice of P is 
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isomorphic to the face lattice FL(x) of the chirotope X of atiine dependencies on 
{y~ . . . . .  y,}. Any realization of X* is isomorphic to a Gale transform of P. 

For any linear realization {xj . . . . .  x , }CR T M  of X the polyhedral cones 

pos{xt . . . . .  xn} and pos(P × {1})C R T M  have the same face lattice FL(x ). 

A combinatorial sphere S is called a matroid sphere if S = FL(x) for a 

chirotope X- Clearly, S is polytopal if and only if S = FL(x) for a realizable 

chirotope X. 

We shall see later in this paper that there exist non-polytopal matroid spheres 

as well as combinatorial spheres which already fail to be an oriented matroid 

sphere. 
Since every matroid sphere is a combinatorial PL-sphere by a result of Mandel 

[18] it is a consequence of Steinitz' theorem that FL(x) is polytopal for every 

d-chirotope with d _- 4. 

The Vambs matroid [5] is a smallest example of a non-realizable chirotope 

which has only extreme points such that its face lattice is polytopal. Thus in order 

to prove the non-polytopality of a sphere S one has to prove the non- 

realizability of all chirotopes X with S = FL(x). 

3. Chirotopes arising from a given sphere 

If we had a subroutine to decide the realizability of a chirotope, the following 

algorithm would decide the polytopality of a given sphere. 

3.1. ALGORITHM. 
INPUT: Combinatorial (d-2) -sphere  S with n vertices 

OUTPUT: "S is polytopal" or "S is not polytopal" 

1. Compute the finite set 

Cd.n(S):={XIX d-chirotope with n vertices and F L ( x ) =  S} 

2. If there is a realizable X E G.n (S): 

"S is polytopal" 
Else 

"S is not polytopal" 

In this section we shall describe the first step, the computation of the set 

Cd., (S). For an approach towards the hard second step, see [10]. 

First let us assume S to be simplicial. Then we can identify S with the subset 

Fs C A(n, d - 1) of facets of S. 
Let Ss:={/~ E A(n,d)l::l/~i: /~\/~i E Fs} denote the set of outer simplices 

according to S. To verify that X Is, is determined by S = FL(x) consider the 
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graph Gs = (Ss, E)  on the outer simplices with 

(tr, r )  E E:C:~tr O r E F,. 

Gs is connected: For fixed p, ~ F,, Gs obviously connected. On 

the other hand, the components Gs are connected to each other by a 

graph which is isomorphic to the 1-skeleton of the dual sphere S*. 

As a direct consequence of the definitions of cocircuits and the face lattice of X 

we have 

(*) XEG.n(S) Cr~forall I~EF~ and i,j~.~:X(t~,)X(lxi)=l. 

Now choosing a spanning tree in Gs and defining w.l.o.g. X(tr) := + 1 for the 
root tr E S~ any one of the usual tree-traversing algorithms will assign the 

vertices ~- of Gs the correct sign ~((r) according to (*). Thus X [s~ is determined by 
S. 

Now we have to extend X Is, to a chirotope (if it exists). This can be done by 

using consequences of the quadratic Grassmann-Pliicker relations. The demand 

that X should be a chirotope is equivalent to the property that for any 

tr E A(n, d - 2), r E A(n, 4) the set 

• • 

equals {0}, { - 1, + 1} or { - 1, 0, + 1}, compare [9]. The following example will 
illustrate this. 

3.2. EXAMPLE. Let S be a hexagon, i.e., F~ = {(12), (23), (34), (45), (56), 
(16)}CA(6,2). By (*), X(123) :=+1  implies X l s ~ + l ,  whereby S~= 
A(6, 3)\{(135), (246)}. With tr = (1) ~ A(6, 1), r = (2345) E A(6, 4) we have 

{X(123)- X(145), - X(124). X(135), X(125)- X(134)} = { + 1, - X(135)}. 

This yields X(135)= + 1. Similarly X(246)= + 1 for every chirotope X with 
FL(x ) = S. 

While for n-gons S there is, apart from sign reversing, only one 3-chirotope X 
with n vertices such that S = FL(x),  in general the.re will be several chirotopes in 

In this case the Grassmann-Pliicker consequences will only lead to X I,~ with 

S, C A ~ A(n, d)  and it is necessary to traverse a tree of possible extensions of 
X IA to a chirotope. 

Finally we consider the case of a non-simplicial sphere. In this case we 

compute a triangulation S' of S. This can be done, recursively, by determining 
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(d - 1)-chirotopes Xr with FL(xr) = F for every facet F of S. Any simplicial lift 

X~ of XF, i.e., a simplicial d-chirotope with X'~/(n + 1) = XF, leads to an oriented 

matroid triangulation of F, compare [4]. 

Now we compute X Is' for the simplicial sphere S' as described above and 

redefine X()t) = 0 if A C F for a non-simplicial facet of S. Again extending X Is" to 

possible chirotopes X we obtain the desired set Cu, n (S). 

4. Non-matroid spheres 

For k _-<2 or n _-< k +4  every combinatorial k-sphere with n vertices is 

polytopal, hence an oriented matroid sphere, compare Mani [19] and Klein- 

schmidt [16]. In this section we prove the reverse. 

4.1. THEOREM. There exist non-matroid k-spheres with n vertices whenever 
k>=3 andn>_-k+5. 

PROOF. Consider the Barnette sphere ~, i.e., the 3-sphere with 8 vertices 

given by the following list of facets: 

1237 1258 1458 2368 3567 

1238 1346 1467 2457 4567 

1245 1348 2356 2568 4568 

1247 1367 2357 3468 

We prove that the subcomplex c¢ determined by the eight underlined facets 

cannot be the subcomplex of any matroid sphere FL(x ). 

If there were a 5-chirotope X such that ~ C FL(x) then (*) would imply that in 

X the following 12 simplices have the same non-zero orientations: 

12367 12543 
I I 

12357 12547 
I I 

12347 = 12347 
I I 

12547 12647 
I I 
32547 13647 

I L 
32567 13642 

I 
32561 
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Choosing cr = (123) E A(8, 3), ~" = (4567) E A(8, 4) we have 

{ x ( ' ~ ) x ( ~ ' ~ ' ~ ) ,  - x ( ~ ' ~ ) x ( ~ ) ,  x (~ ' ,~ '~ )x ( ,~3) }  

= {X(12345)X (12367), - X(12346)X(12357), X(12347)X(12356)} = { - 1} 

contradicting the chirotope property. 

By the usual techniques of subdividing facets and constructing pyramids, [15], 

we can extend ~ to a combinatorial non-matroid k-sphere with n vertices for all 

n_->k+5_->8. [] 

4.2. REMARK. A similar proof for both the non-polytopal Briickner sphere 
[15] and the Barnette-sphere can be found in [3]. The fact that every 

non-polytopal 3-sphere with 8 vertices is not a matroid sphere can be obtained 
by the following indirect argument, too. 

Every 3-chirotope with 8 vertices is reorientation equivalent (compare [17]) 

to an acyclic 3-chirotope with 8 vertices and therefore corresponds to a 

stretchable arrangement of 8 pseudolines [14], [11]. By dualizing we see that 

every 5-chirotope with 8 vertices is realizable, hence every matroid 3-sphere with 

8 vertices is polytopal. 

5. Neighborly 4-polytopes with 10 vertices 

In [1] Altshuler established an enumeration of all combinatorial neighborly 

3-spheres with 10 vertices and classified those 3-spheres as far as possible into 

polytopes and non-polytopal spheres. He proved that there exist at least 333 and 
at most 432 neighborly 4-polytopes with 10 vertices. 

Using the methods described in the preceding sections and the coordinization 

algorithm described in [10] we elaborated on the 99 doubted polytopes and 
achieved the following result. 

5.1. THEOREM. There are precisely 431 different combinatorial types o[ neigh- 
borly 4-polytopes with 10 vertices. 

A,f,0 (Altshuler's notation) which is of particu- 5.2. REMARKS. For the sphere ,,, 42s 

lar interest because of its high symmetry, a proof for non-polytopality is given in 

[7]. 

This proof has been established by the same technique as the proof for a 

smallest non-polytopal matroid sphere in the next section. 

Among the new decided spheres was another case of special interest, sphere 
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10 M,~. In this case the combinatorial automorphism was used in addition. It lead 
to a first neighborly 4-polytope known to have no universal edge. This answers a 
question of Perles, posed again in Oberwolfach 1984. Universal edges have been 
used by Shemer to obtain a huge family of neighborly polytopes with his sewing 
process [21]. 

In oriented matroid theory universal edges have been introduced under the 
name of contravariant pairs of points [12]. For a chirotope X ~ { - 1, 0, + 1} ̂t~d~ 
the pair (i,j), i,] ~{1 . . . . .  n}, is called a contravariant pair, if i and i have the 
same sign in every cocircuit of X, i.e., i and j are not separated by any spanned 
hyperplane H C {1 . . . . .  n}\{i,j}. 

Our procedure to decide all the remaining doubted polytopes yielded projec- 
tively unique chirotopes. The uniqueness in these cases was shown by Shemer in 
general, see [21], theorem 2.12. In our notation Shemer's results reads: 

Let S be the boundary complex of a neighborly 2k-polytope. Then C~k+~.~ (S) 
contains exactly two simplicial chirotopes Xs and -Xs.  

A new proof of Shemer's result in the broader setting of oriented matroids has 
recently been found by the second author and will be published in a forthcoming 

paper. 

5.3. Description of Finding the Proof of our Theorem According to Algorithm 
3.1 

For all 99 former doubted polytopes we found in the first step of algorithm 3.1 
the corresponding projectively unique chirotopes. Thus the problem remained 
to solve 99 inequality systems with (~o) = 252 determinant inequalities. Using the 
concept of solvability sequences as described in [10] the most interesting cases 
M t° and iv • 4~s M416 (m Altshuler's notation) [1] were decided first. For M~ ° see [7]. A 
more detailed exposition of proofs for non-realizability is planned for a 
forthcoming paper. 

The remaining 97 spheres have universal edges (i, j). This means algebraically 
that according to a basis b ~ A(10,5) with i E b, i ~  b, the variable (b) [i l J] has 
either no upper bound or no lower bound. Hence at least ~ )=  70 of the 252 

inequalities can be omitted, immediately. 
In the following we don't  give again a detailed description of the solvability 

sequence algorithm [10] which was used, but we briefly introduce the main ideas 
with the following example of the cyclic 4-polytope with 10 vertices. For 

notations compare [10]. 

EXAMPLE. Let X: A(10, 5)--->{ + 1} be the cyclic 5-chirotope with 10 vertices. 
For every 10 x 5 matrix M with AsM = X there exists a 5 x 5 matrix T such that 
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M . T =  

l 0 0 0 0 ! /  
a b c d e 

f g h i / 
0 1 0 0 

0 0 1 , 0  
k l m n 

0 0 0 1 
0 0 0 0 
u IJ w X 

The variable a in the standard representative matrix M.  T according to the 

basis (14589) A(10, 5) equals the positive determinant (14589)[1/2] = (24589) and 

has no upper bound in the induced inequality system with variables {a . . . . .  y} 

since (1, 2) is a contravariant pair (universal edge) in X. 
We call (y, t, o,/, e, x, s, n, i, d, w, r, m, h, c, v, q, l, g, b, u, p, k, f, a) a solvability 

sequence for X according to the basis (14589) because in choosing real numbers 
for the variables, every choice of the first z numbers, 1 =< z _-_ 24, which is 
allowable with respect to the inequality system still allows one to find a real 
number for the next variable. 

In case of our doubted polytopes we used a computer program to find 
solvability sequences. 59 of all doubted polytopes were even max-realizable in 
the sense of [10] (Section 5). In 9 cases we finished our investigation after having 
found a "nearly" solvability sequence with the aid of an interactive computer 
program which lead to coordinates. 

A detailed list of all 98 polytopes can be obtained upon request from the 
authors. Here we illustrate only one special example. 

5.4. EXAMPLE m M.~,. The facets of this neighborly sphere are 

1234 1 2 7 9  2340 3459 4567 
1236 1 3 4 6  2369 3467 4560 

1240 1 4 6 0  2390 3478 4578 

1258 1 5 8 0  2589 3490 4590 

1250 1 6 7 8  2590 3589 5670 

1269 1 6 7 9  2789 3679 5780 

1278 1 6 8 0  3458 3789 6780 

The corresponding (pair of) chirotope(s) was found by a first program to be 
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X~,(A(10, 5)) as follows: 

)¢~o(12345) = - 1, Xi°(12346) = - 1 . . . . .  

The whole list ordered linewise lexicographically is: 

X~°(67890) = + 1. 

÷ + + + + + - - + - - ~  + . . . .  + + ÷ + +  ÷ - - + - - + + + + + - -  + . . . . .  + - - + - -  

+ + + +  . . . . .  + + + + + + + + ÷ + +  + + + + - - + + - - i f - -  + + - - + - - + + - - + +  + + + + - - + + - - + ~  

+ + - - + - - + + - - + +  + + - - + - - + - - - - + - -  - - - -  + + + - - _ _ +  + + + + + + + + + +  + + + + - - + + - - + - -  

+ + - - + - - + + - - + +  + + + + - - + + - - + - -  + + - - + - - + + - - + +  + + - - + - - + - - - - +  . . . .  + + + + + - - - -  

+ . . . .  + + + + +  + + + + + + + + + +  + + + + + + +  . . . .  + + + + + + + + +  + +  . . . .  + - - - - _  

- - +  

A best basis with respect to the number of steps in which the concept of 
max-realizability works [10] was determined by a second program to be (12367). 
Thus the first 6 steps of the solvability sequence were found, namely (12467), 
(12368), (12365), (12369), (12360), (12364). To get the new inequality system 
exactly all determinants containing the above variables (compare the basis 
(12367)) were deleted. 

This remaining inequality system was now reduced, that is to say, inequalities 
which were consequences of the remaining inequality system (by using 
Grassmann-Pliicker relations), see the following list, were deleted. 

(12780) (12790) (13579) (13789) (13780) (13790) (15679) 
(15789) (15780) (15790) (16789) (16790) (17890) (23579) 
(23789) (23780) (23790) (25679) (25789) (25780) (25790) 
(26789) (26790) (27890) (34570) (34789) (34780) (35679) 
(35789) (35780) (35790) (36789) (36790) (37890) (56789) 
(56790) (57890) (67890) 

We were left with an inequality system (minimal system) of 14 inequalities 
together with 19 inequalities for the variables itself in 19 variables. 

The remaining determinants are 

(12570) (12789) (15670) (16780) (23479) (23470) (23578) 
(34567) (34578) (34579) (34679) (34790) (35670) (56780) 

The next 2 variables (12967), (12867) were eliminated according to algorithm 
4.2 (3.1) in [10] whereby none of the disjoint subsets of A(10, 5) were empty, 
marked by (*) in the following list. 

The whole solvability sequence is given in Table 1 as well as the list of 
homogeneous coordinates. 
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TABLE 1 

Solvability sequence Coordinates 

25 (12467) 
24 (12368) 
23 (12365) 
22 (12369) 
21 (12360) 
20 (12364) 
19 (12967) 
18 (12867) 
17 (18367) 
16 (12387) 
15 (82367) 
14 (12357) 
13 (12567) 
12 (12067) 
11 (52367) 
10 (92367) 
9 (02367) 
8 (42367) 
7 (15367) 
6 (19367) 
5 (14367) 
4 (10367) 
3 (12347) 
2 (12397) 
1 (12307) 

• = 31.00 
-= 2817.45 
• = 207.00 
• = 11.130 
• = 3•00 
-= 1.00 
• = - 0.01 
• = 0.59 
• = -1 .17  
• = - 29.00 
• = 1.00 
• = -7 .00  
• = 3.00 
• = 1.00 
• = 0.50 
-= -2 .00  
• = 0.67 
• = 1.00 
• = - 1.00 
• = 7•00 
-= -3 .00  
-= - 1.00 
• = - 1.00 
• = 1.00 
• = - 1.00 

A n y  4 - h y p e r p l a n e  H s e p a r a t i n g  ( 0 , 0 , 0 , 0 , 0 )  f r o m  all  v e c t o r s  (v~ . . . . .  v~5), 

i = 1 . . . . .  10 n o w  d e f i n e s  a p o l y t o p e  

P = c o n v { H  fq L t . . . .  , H N L ,} ,  L , : =  {h ( v ,  . . . .  , v,5) 1 A > 0} 

w i t h  t h e  g i v e n  list  of  f a ce t s .  

6 .  N o n - p o l y t o p a l  m a t r o i d  s p h e r e s  

F o r  a c e r t a i n  t i m e  a f t e r  t h e  i n t r o d u c t i o n  of  f a c e  l a t t i c e s  f o r  o r i e n t e d  m a t r o i d s  

b y  L a s  V e r g n a s  [17] a n d ,  in  a p o l a r  v e r s i o n ,  b y  E d m o n d s  a n d  M a n d e l  [18],  i t  w a s  

n o t  k n o w n  w h e t h e r  t h e r e  ex i s t  a n y  n o n - p o l y t o p a l  m a t r o i d  s p h e r e s •  I n  1980 

L a w r e n c e  f o u n d  a c o n s t r u c t i o n  t h a t  y i e l d e d  a n  a f f i r m a t i v e  a n s w e r  t o  t h i s  

q u e s t i o n ,  s e e  [20].  T h e  s m a l l e s t  e x a m p l e  t h a t  c a n  b e  c o n s t r u c t e d  w i t h  

L a w r e n c e ' s  m e t h o d  is a 1 0 - s p h e r e  w i t h  16 v e r t i c e s .  

F o r  s i m p l i c i a l  s p h e r e s  w h i c h  c a n  n e v e r  b e  o b t a i n e d  b y  L a w r e n c e ' s  e x t e n s i o n  

a n d  f o r  k - s p h e r e s  w i t h  3 < k =< 9 t h e  p r o b l e m  r e m a i n e d  u n s o l v e d •  



268 J. BOKOWSKI AND B. STURMFELS Isr. J. Math. 

In this section we show that there are non-polytopal simplicial matroid 

k-spheres with n vertices for 3 =< k and n => k + 6 by proving that the sphere 

M9963 from [2] is a smallest example of a non-polytopal matroid sphere. 

The non-realizability proof for the chirotope of M93 might be of interest on its 

own because it indicates a general method to prove non-realizability of oriented 

matroids. 

We begin with a brief discussion of Lawrence's method in the terminology of 

Sections 2 and 3. 

Let X: A(n, d)---~{-1,0, + 1} be a chirotope. We define a new chirotope 

)~: A(2n, d)---~ { - 1,0, + 1} as follows. Write ;t ~ A(2n, d)  as a = / z  + r .  n where 

/~ = ;t~ rood n, 1 _-__/~ _-__ n. Then 

:=  ( -  1) ' 

In case of realizability, i.e. X = sign AdM, we have 

07)* (the dual of 2)  is called the Lawrence extension of X. 

6.1. THEOREM (compare [20], Theorem 3.1.2). X is realizable if and only if 
FL(2*) is polytopal. 

PROOF. We assume that S = FL0?*~) = FL(~*) for two d-chirotopes Xt and X2 

with n vertices. By construction {i,i+ n} is a cofacet of S for every i ~ 

11 . . . . .  hi .  
Since for every/~ @ A(n, n - d) and ]~/~ ,  {/z~,.. . ,/z,-d, n + 1 , . . . ,  2n}\{] + n} 

is contained in a ~acet, we have 

)~(/z, n + 1 . . . . .  ,2n)  = ~*(/x, n + 1 . . . . .  2n). 

This gives 

Xt = FcTl{n + 1 . . . . .  2n} = ~U{n + 1 , . . . , 2n}  = x~ 

which proves the theorem. [] 

This theorem shows that for every non-realizable d-chirotope X with n 

vertices there exist two non-simplicial non-polytopal matroid spheres FL(~*) 

and FL((~*)*) of dimension 2 n - d - 2  and n + d - 2 ,  respectively, with 2n 

vertices. 
For the smallest non-realizable chirotope of rank 4, the Vamos matroid [5] 

(with 8 vertices), we obtain a non-polytopal 10-sphere with 16 vertices. 

Now we formulate the main result of this section: 
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6.2. THEOREM. There is a non-polytopal simplicial matroid k-sphere with n 

vertices for every k >= 3 and n > k + 6. 

PaooF. We show that the 3-sphere M~63, see [2], with 9 vertices has these 
properties. Then the theorem follows by the matroidal versions of subdividing 
facets and constructing pyramids, compare [20]. 

The facets of M93 are as follows: 

1235 1289 2345 2689 3689 
1237 1356 2347 3459 4567 
1256 1368 2456 3478 4579 
1268 1378 2467 3489 4789 
1279 1789 2679 3569 5679 

With a computer program it was shown in [3] tha t there  is (up to a factor ± 1) 
exactly one 5-chirotope X93 with 9 vertices such that F L ( x 9 3 ) =  M 9 3 .  

X93 is given by the following list of orientations X~63(A(9,5)) (linewise 
lexicographically): 

- 1  - 1  +1 - 1  - 1  +1 +1 +1 +1 +1 +1 +1 - 1  - 1  
+1 - 1  - 1  +1 +1 +1 + 1 - 1  - 1  +1 - 1  - 1  +1 +1 
+1 +1 + 1 - 1 - 1  --1 +1 + 1 - 1  +1 + 1 - 1  +1 +1 
- 1  +1 +1 +1 - 1  +1 + 1 - 1  - 1  - 1  - 1  - 1  - 1  - 1  
+ 1 - 1  +1 + 1 - 1  +1 +1 +1 +1 +1 +1 - 1  +1 + t  
+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 + 1 - 1  

Using the following Grassmann-Pliicker relations 
minants 

- (12379) (36789) (12369) {367 
+ (12379) (36789) (34679) {236 
- (12379) (12367) (34679) {369 
+ (12367) (35679) (34679) {239 
- (12367) (35679) (12369) {379 
+ (35679) (36789) (12369) {237 

One again obtains zero for the sum. On the other 
summands can be cancelled to give the identity 

- (12379) 
- (12379) 
+ (12379) 
- (12367) 
- (12367) 
+ (35679) 

+1 +1 +1 +1 +1 +1 +1 
- 1  - 1  - 1  - 1  - 1  - 1  - 1  
+1 +1 +1 + 1 - 1  +1 +1 
+1 +1 + 1 - 1 - 1 - 1  +1 
- 1  +1 +1 + 1 - 1  +1 +1 
- 1  +1 + 1 - 1 - 1 - 1 - 1  

multiplied by certain deter- 

2459} 
1579} 
2578} 
1678} 
2468} 
1469} 

hand, 

= 0  

pairwise, some of the 

(36789) (12369) (34567) 
(36789) (34679) (12356) 
(12367) (34679) (35689) 
(35679) (34679) (12389) 
(35679) (12369) (34789) 
(36789) (12369) (12347) = 0. 
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Considering the orientations of the chirotope all these products (leading 

sign included) must have equal sign contradicts this identity. Since all determin- 

ants contain point 3 we see that already the 4-chirotope X93{3} with 8 vertices 

cannot be realizable. 

It is known that for every rank d = 3 there is an infinite family of minor- 

minimal non-realizable chirotopes [9]. Hence an easy combinatorial realizability 

criterion by excluding a finite number of subchirotopes cannot exist in the 

context of oriented matroids. 

It seems likely that a similar result holds for the polytopality of spheres. This 

would imply that a local Steinitz theorem does not exist for higher dimensions. 

6.3. PROBLEM. For fixed k _>-3 does there exist an infinite set S¢ of spheres, 

such that for every S E S¢: 

(1) S is non-polytopal; 
(2) for every vertex x of S: 

(2.1) the vertex figure S/x is polytopal, 

(2.2) the antistar ast(x, S) of x can be embedded in a polytopal sphere. 

It seems impossible to construct such a family from the known examples of 

non-realizable oriented matroids, because all Lawrence-like constructions yield 

increasing rank. 
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